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Scale-dependent anisotropic polarizability in mesoscopic structures
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Optical properties of inhomogeneous materials are, in general, scale dependent. We show that, when ob-
served at mesoscopic scales, the local anisotropic polarizabilities depend on the volume of interaction, which
may be limited by either the excitation field or material dimensions. We demonstrate the existence of a specific
interaction length scale corresponding to the maximum degree of local anisotropy and discuss its relation to the
detailed morphology of a disordered medium. Probing these mesoscopic scales provides information about the
local structure and allows characterizing material systems that otherwise may appear similar.
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I. INTRODUCTION

In general, material properties are scale dependent, and
one can usually define microscopic, mesoscopic, and macro-
scopic regimes. Their absolute length scales will depend on
the specific material characteristics. The microscopic scale
refers to the volume over which the material is still homoge-
neous; probing this scale reveals what is usually referred to
as the “intrinsic properties” of the medium. The optical char-
acteristics at the largest, macroscopic scale, involve signifi-
cant averaging over volumes usually much larger than the
characteristic scales of inhomogeneities. All known effective
medium theories are based on this averaging principle [1].
Mesoscopic scales, on the other hand, are small enough that
fluctuations around the average become important, and may
contain additional information about structural morphology.

In the case of inhomogeneous media, a microscopic de-
scription provides the intrinsic dielectric properties of the
constituents, while a description at macroscopic scales re-
sults in an effective averaging of the dielectric properties.
For large scale randomly inhomogeneous media, a multiscale
description of the light propagation can be envisioned where
the Maxwell’s equations, the transport equation, and the dif-
fusion equation can be applied to describe the microscopic,
mesoscopic, and macroscopic scales, respectively. It should
be anticipated that the observed optical response from a
light-matter interaction depends on the volume probed ex-
perimentally. This concept has been used, for instance, to
describe different statistical regimes in near-field scattering
from random media [2,3]. Note that in the case of near-field
microscopy, the volume of effective interaction can be
changed by varying the intensity of excitation or by manipu-
lating the tip-sample separation [2,3].

In this paper we will show that, at certain scales, the ma-
terial response depends strongly on the local structure, and
that the individual morphologies of different media result in
unique optical signatures. We will exploit the sensitivity of
optical interaction to the local material structure, and will
identify a specific length scale—maximum anisotropy
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length—that depends on the local composition and organiza-
tion of composite random media. Even though the optical
properties in the mesoscopic regime are scale dependant, we
will show that this newly introduced length scale represents a
unique, intrinsic property characterizing the polarimetric re-
sponse of optically inhomogeneous media.

II. LOCAL ANISOTROPIC POLARIZABILITY OF
INHOMOGENEOUS MEDIA

The interaction between constituents of composite mate-
rials can generate anisotropic responses, even in situations
when both the micro- and macroscopic properties are isotro-
pic. Such structurally induced anisotropy exists, for instance,
in aggregates of metal nanoparticle [4] or in small spheres
with eccentric inclusions [5-7]. As a result, unique optical
signatures develop at these mesoscopic scales.

When the materials’ description at mesoscopic scales in-
volves an anisotropic response, one has to go beyond con-
ventional effective medium approaches, which are based on
assigning some effective dielectric permittivity to the local
properties. In the case of an isotropic distribution of optically
isotropic constituents, the effective dielectric permittivity is
scalar. However, if the volume of averaging is limited, the
local properties can no longer be described with a scalar
permittivity. For an averaging volume much smaller than the
wavelength, the polarimetric scattering properties can be de-
scribed as anisotropic Rayleigh scatterers as suggested in
Fig. 1. Thus, in this case we can locally assign an effective
dielectric polarizability tensor (or, equivalently, permittivity,
or refractive index tensors) where the magnitude of the diag-
onal components, degree of anisotropy, and the orientation of
main axes depend on the particular location as suggested in
Fig. 1(b) or change from one mesoscopic object to another as
illustrated in Fig. 1(d).

In general, the characteristics of these “anisotropic scat-
terers” will also depend on the mesoscopic volume (level of
averaging) considered. Therefore, one can define a local an-
isotropic polarizability (LAP) that is determined, for ex-
ample, by the particles dimension if we deal with small in-
homogeneous objects Figs. 1(c) and 1(d) or by the excitation
volume, as in the case of near-field optical microscopy [2]
Figs. 1(a) and 1(b).
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FIG. 1. (Color online) (a) An inhomogeneous material system
probed at mesoscopic scales through a local excitation provided by
a near-field optical probe. (b) The observed far field response of the
material system may be interpreted as being determined by a dis-
crete array of anisotropic Rayleigh scatterers with different local
magnitudes and orientations. (c) An inhomogeneous material sys-
tem where the physical dimensions of the object limit the extents of
the field material interaction and the effective anisotropic Rayleigh
scatterer (d) producing an equivalent scattered field.

As an example of a mesoscopic optical response, let us
consider a spherical interaction volume created either
through local excitation or physical extents of the object,
with dimensions smaller than the wavelength. Optical inho-
mogeneities within this volume effectively determine an
overall anisotropic polarizability depending on the specific
packing structure. In practice, there are different ways to
measure this anisotropic polarizability. If the magnitudes of
the polarizability elements remain constant during the pola-
rimetric observations, and only the orientation of the effec-
tive anisotropic polarizability changes randomly, one can ap-
ply the method of stochastic scattering polarimetry (SSP) [8].
Notably, in this case one can recover the anisotropic polariz-
ability irrespective of the incident state of polarization.

There are situations however where the degree of aniso-
tropy may change through the measurement. One can imag-
ine that even for isotropic hard sphere packing, situations
may exist where there is some dynamic rearrangement of
inclusions resulting in changes of the effective scattering po-
larizability. In such conditions one can still recover informa-
tion about the anisotropic polarizability but now it will be in
terms of distributions of the tensor elements as we will show
in the following.

In a scattering experiment, the relationship between a real
polarizability « and the fully polarized incident and scattered
fields is commonly described in terms of the corresponding
cross-spectral density matrices W=(E*E) as [9]

W, = PTaW,, aP, (1)

where W,,,, W,,. are the cross-spectral density matrices of
the scattered and excitation fields, P accounts for the field
propagation to the detector, superscript 7' stands for trans-
pose. To allow for variations in the magnitude of the polar-
izability not accounted for in the SSP approach, one must
measure the entire polarizability tensor and determine both
its magnitude and orientation.
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To establish simple relationships between the polarizabil-
ity tensor elements and the measured intensities, a direct pro-
cedure can be developed based on sequential excitations. For
a fixed orientation of the effective polarizability « there are
six unknown elements in the symmetric polarizability tensor.
Using Eq. (1), one can find a deterministic relationship for
each of the polarizability elements using a scheme based on
three independent excitation fields along with a polarimetric
detection of scattered intensities. If the three independent
excitation fields are chosen to be orthogonal, and if the scat-
tered intensities are measured along the same direction of
polarization, one can write a simple expression for the mea-
sured intensity /;;=|fi;a] aE,[*, where i and j correspond to
the direction of polarization of excitation field E and the
direction of polarization of detection, i is the unit vector
along j-direction of intensity detection. For example, when
the excitation field is polarized along x and the measured
intensity is copolarized, the measurement provides directly
the «,, component of the polarizability tensor. Following
similar steps, a system of six equations can be established
and the six independent components of symmetric polariz-
ability tensor can be retrieved. The diagonal form of the
polarizability and the corresponding angles of rotation can
then be found after performing eigenvalue decomposition,

a, 0 O
a=R"l 0 a, 0 |R. (2)
0 0 a

In Eq. (2), the matrix R is composed of the columns of the
eigenvectors and accounts for the three-dimensional rotation
of the diagonalized polarizability into the detection coordi-
nate frame. The eigenvalues are ordered such that «,= «,
=a,.

This procedure of measuring scattered intensities and cal-
culating the diagonal form of the polarizability will now be
applied to the case of scattering from inhomogeneous
spheres containing inclusions much smaller than the wave-
length. We will examine the case of two different structural
compositions which, at macroscopic scales, correspond to
the same dielectric permittivities according to conventional
effective medium theories (for instance, the Bruggeman
theory). Inhomogeneous materials were modeled by ran-
domly placing isotropic homogeneous spherical inclusions
within the volume of some host characterized by a certain
refractive index, and then the optical response was calculated
using the coupled dipole approximation (CDA) [10]. The
polarizability of these inclusions is related to their assigned
refractive indices through Lorentz-Lorenz formula. A Me-
tropolis Monte Carlo (MMC) method of packing inclusions
was implemented [11]. To verify the successful packing of
hard spheres, the pair correlation function was calculated and
compared to the analytical three-dimensional (3D) Percus-
Yevick solution [11]. For each distribution of inclusions, the
diagonal elements of the polarizability tensor («,, &, c,) and
the angles specifying the orientation of its main axes were
determined using the procedure based on Egs. (1) and (2)
which require successive excitation with three fields in dif-
ferent states of polarization and the calculation of corre-

016609-2



SCALE-DEPENDENT ANISOTROPIC POLARIZABILITY IN...

1 1
1002 10

z z

2ol £

z 6 ® z 6 \

£ 47 24 A

2 3 \

£t g2 \\
0 ke o 5 0 e s \ .

52 53 54 55 56 57 52 53 55 56 57

5, ) 53 54
Polarizability [arb. units] Polarizability [arb. units]

FIG. 2. (Color online) Probability density functions of ordered
(see text) diagonal elements of the reconstructed polarizability ten-
sor. The volume of interaction corresponds to a sphere of 50 nm in
diameter having a host refractive index of 1.33 and (a) inclusions
with a refractive index of 2 and a volume fraction of 0.27 and (b)
inclusions with a refractive index of 2.4 and a volume fraction of
0.18. The dots are the results of the numerical simulations while the
solid lines are guessed “best fit” of numerical data.

sponding scattered intensities in two orthogonal states of po-
larization. In order to acquire statistically relevant
information, a large number of realizations (random packing)
were analyzed and the inverse problem of polarizability ten-
sor determination was solved for each realization of the ran-
dom medium. As a result, we obtain probability density func-
tions (PDF) for the distributions of diagonal elements of the
polarizability tensor. The forms of these PDFs reflect the
properties of the statistical ensemble of eigenvalues and
eigenvectors that characterizes the material properties at this
mesoscopic scale.

In Fig. 2 we summarized the results corresponding to the
two different structural compositions examined. We note that
for the uniformly random material simulated based on a hard
sphere model of the inclusion packing, there is no preferen-
tial orientation of the effective polarizability. Therefore, our
procedure resulted in uniform distributions of the orienta-
tions R for both inhomogeneous materials. The values found
for the tensor elements on the other hand indicate that, at this
mesoscopic scale, the polarizabilities are not only aniso-
tropic, they are also different for the two inhomogeneous
materials as can be clearly seen in Fig. 2.

For sample A, the smaller dielectric contrast between the
host and the inclusions leads to a narrower distribution of the
diagonal elements of the polarizability tensor and, conse-
quently, to smaller fluctuations in the scattered fields. In the
case of sample B, however, the larger dielectric contrast re-
sults in a larger separation between «,, a;, «,. also contrib-
uting to larger intensity variations.

To quantitatively characterize the local anisotropic polar-
izability (LAP), we introduce an anisotropy factor defined as
the contrast calculated for diagonal components of polariz-
ability tensor «

Ao V3 Tr(a?) — Tr(a)?
Tr(«)

\‘J’aa(aa -« ) +a (a - CYC) + ac(ac - au)
— \,5 b b\ %b i (3)

a,+a,+a,

where Tr denotes the trace of tensor «. Note that, in the past,
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other definitions have been used for such anisotropy factor.
In Ref. [4] for instance, an anisotropy factor S was defined as
the variance of  depolarization ﬁ(r):%i
—[vGo(r,r")d%. Here Gy(r,r') is the regular part of the
quasistatic free-space dyadic Green’s function for electric

factors

field, 1 is the unity tensor. In this designation, the local an-
isotropy factor cannot depend on the excitation volume and,
moreover, its locality can be violated in 3D random compos-
ites without structural self-similarity, i.e., in nonfractal com-
posites that are of interest here. Another definition of the
anisotropy factor was introduced in Ref. [12]; it is similar to
Eq. (3) except that it is based on the variance rather than the
contrast of the polarizability components. The definition of A
in Eq. (3) is most appropriate for our discussion, which fo-
cuses on describing the form anisotropy and not necessarily
on the absolute magnitude of a specific dipole moment.

Using the definition in Eq. (3), the anisotropy factor A
was calculated for every realization of the localized inhomo-
geneous volume. In this sense, A is a statistical parameter
similar, for example, to the contrast measured in near-field
microscopy [2]. Of course, an averaged A can then be calcu-
lated from the recovered ensemble of values of this param-
eter. The average anisotropy factors calculated for the two
materials illustrated in Fig. 2 are 9.2 X 1073 and 13.2X 1073,
respectively. The 30% difference clearly demonstrates that
LAP is a parameter that can be used to quantify differences
between macroscopically similar media.

III. SCALE-DEPENDENT LOCAL ANISOTROPIC
POLARIZABILITY

In the preceding discussion, LAP was examined over one
single length scale. This situation corresponds to fixed vol-
ume of light-matter interaction imposed by the measurement
procedure. In case of the two different media presented in
Fig. 2, the differences will, of course, diminish as this vol-
ume of interaction increases; the two different optical re-
sponses will converge toward the same macroscopic value
corresponding to an isotropic polarizability tensor. The rate
of this convergence however may be different depending on
the specific structural morphology.

We will turn now our attention to LAP’s dependence on
the volume of interaction. We have repeated the previous
analysis for spheres of different radii R and the results are
presented in Fig. 3 where we compare the anisotropy factor
A for the case of two different sizes of spherical inclusions
randomly distributed within probing volume of different
sizes. The main observation is that A always attains a maxi-
mum that defines a new length scale characterizing the elec-
tromagnetic interaction. This maximum anisotropy length
(MAL) represents the length scale over which the response
of inhomogeneous medium is most sensitive to the polariza-
tion (vector) properties of the excitation field. In other words,
it is at this scale that, in average, the depolarization of light
during scattering occurs more effectively. Along with scatter-
ing mean free path and transport mean-free path that describe
the way the energy is transferred, MAL represents another
interaction-specific length scale that characterizes the propa-
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FIG. 3. (Color online) Effective anisotropy factor A as a func-
tion of excitation volume R normalized by inclusion diameter d for
spherical inclusions with a refractive index of 1.5 randomly distrib-
uted in vacuum. The continuous lines correspond to inclusions with
diameter \/32 while the dashed lines correspond to inclusions of
diameter A/64. Curves 1 to 4 correspond to a volume fractions of
inclusions of 0.3, 0.2, 0.1, and 0.025, respectively.

gation of polarized fields through random media.

At length scales smaller than MAL, the local polarizabil-
ity becomes isotropic with A tending to zero as the probing
volume decreases. At larger scales, the macroscopic behavior
is gradually approached leading again to an effectively iso-
tropic scattering volume with A=0.

As can be seen in Fig. 3, the values of the anisotropy
factor appear to be independent of the size of inhomogene-
ities. This happens, because, in our example, the interaction
inside the inhomogeneous volume considered is mostly
within the electrostatic regime. Therefore, the behavior of A
does not depend on the wavelength and is fully scalable with
inclusions’ dimensions. Also noticeable in Fig. 3 is the faster
decay of A for higher volume fractions of inclusions inside
the sphere of interaction. This can also be easily explained
by realizing that, for a given excitation volume, the larger
number of inclusions corresponding to a higher volume frac-
tion represents in fact a more isotropic medium.

In the particular case when the spherical inclusions can be
considered as packed hard spheres, we found that MAL has a
simple interpretation. As illustrated in Fig. 4, in this case
MAL defines the volume containing, in average, three inclu-
sions. Note that three inclusions represent the minimum
number of particles necessary to form a fully anisotropic
scatterer. Thus, the statistical averaging for scatterers con-
taining more than three inclusions results in a gradual de-
crease of the anisotropy factor.

Of course, the other factors determining the optical re-
sponse of a composite medium are the intrinsic properties of
the components. It is expected that, in general, higher aniso-
tropy factors will characterize materials with increasing di-
electric contrasts. This is evident in Fig. 5 were we plot the
value of the maximum anisotropy A, as a function of di-
electric contrast of inclusions The calculations also demon-
strate that the values of A, simply scale with the magni-
tudes of dielectric functions of components indicating that
the A« behavior is determined only by the material’s struc-
ture and not by its composition.
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FIG. 4. (Color online) Maximum anisotropy length (A) normal-
ized by the diameter of inclusions d versus the volume fraction of
inclusions f. Open circles and crosses represent MAL values corre-
sponding to inhomogeneous media with inclusions of diameters of
N/64, N/32, respectively. The solid line corresponds to the volume
containing on average 3 inclusions.

IV. CONCLUSIONS

We have demonstrated that at mesoscopic scales, the op-
tical response of random media consisting of optically iso-
tropic components may be interpreted in terms of local an-
isotropic polarizabilities. We illustrated this concept using
the example of an inhomogeneous medium containing
spherical inclusions, but the model is valid for arbitrary,
macroscopically isotropic inhomogeneous media. At mesos-
copic scales, different materials can be characterized by their
specific anisotropic polarizabilities even though they may
have similar effective dielectric permittivities when de-
scribed in terms of an effective medium approach.

We have also shown that material properties at mesos-
copic scales depend on the volume of interaction, in this
respect, LAP is an attribute of the electromagnetic field-
matter interaction. However, a characteristic length scale,
maximum anisotropy length (MAL), exists at which the de-
gree of local anisotropy A reaches its maximum. At this scale
the inhomogeneous materials are most sensitive to the polar-
ization of incident light. Thus, electromagnetic wave interac-
tion on this scale length results in the maximal depolariza-
tion. Along with other characteristics length scales such as
the scattering mean-free path, the value of MAL reflects es-
sential intrinsic properties of random media.

—-—n=1.3

3.0y |—-=-n=15
251 | Seny
<20
<=§1.5

05 /e/e/e—e

0.00  0.10 0.20

0.30 f

FIG. 5. (Color online) Maximum of anisotropy factor A, as a
function of volume fraction f of inclusions with 50 nm in diameter
and having different refractive index contrasts.
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There are, of course, different means for characterizing
the local optical properties of inhomogeneous media. For
instance, the scalar contrast of scattered intensities measures
the relative variations of the scattering cross-section within
the interaction volume [2,3]. When this volume increases,
the scattered intensity variations decay monotonically to zero
with a rate depending on the medium’s properties. In this
case however, only asymptotic scales can be determined
which may affect the specificity. MAL on the other hand is
not only derived from a tensorial feature of the material but
it is also a local property. Its value is a basic characteristic of
material’s morphology.

We have also shown that, in the case where the composite
material consists of spherical inclusions in a hard sphere
packing, MAL may have a purely geometrical representation,
not depending on the dielectric properties of the medium’s
components. In the case of random packing of spheres, we
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have demonstrated that finding the maximum anisotropy
length allows determining the size of the volume containing
in average three inclusions. Our findings may also be rel-
evant to the design of novel materials because this new elec-
tromagnetic interaction scale represents the material scale at
which the polarimetric response of a medium is most sensi-
tive to the excitation field.

Finally, to reconstruct local anisotropic polarizability, we
used a method based on three different excitations of inves-
tigated mesoscopic volume. However, simpler approaches
can be elaborated using the fact that the main axes of aniso-
tropic polarizability may be uniformly oriented in space. Fur-
ther details will be published elsewhere.

This work was partially supported by the Air Force Office
of Scientific Research and by the Army Research Office.

[1] A. Sihvola, Electromagnetic Mixing Formulas and Applica-
tions, 1EE Electromagnetic Waves Series (The Institute of
Electrical Engineers, London, 1999).

[2] A. Apostol, D. Haefner, and A. Dogariu, Phys. Rev. E 74,
066603 (2006).

[3] A. Apostol and A. Dogariu, Phys. Rev. E 72, 025602(R)
(2005).

[4] S. V. Karpov, V. S. Gerasimov, L. L. Isaev, and V. A. Markel,
Phys. Rev. B 72, 205425 (2005).

[5] G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G.
Pinnick, Appl. Opt. 36, 6115 (1997).

[6] V. Griaznov, 1. Veselovskii, P. Di Girolamo, B. Demoz, and D.
N. Whiteman, Appl. Opt. 43, 5512 (2004).

[7] F. Borghese, P. Denti, R. Saija, and O. 1. Sindoni, J. Opt. Soc.

Am. A 9, 1327 (1992).

[8] D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100,
043901 (2008).

[9] L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics (Cambridge University Press, New York, 1995), Chap. 6.

[10] B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A Opt. Image
Sci. Vis 11, 1491 (1994).

[11] L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electro-
magnetic Waves: Numerical Simulations (Wiley- Interscience,
New York, 2001).

[12] K. D. Bonin and V. V. Kresin, Electric-Dipole Polarizabilities
of Atoms, Molecules and Clusters (World Scientific, Sin-
gapore, 1997).

016609-5



